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Abstract. A common concern when designing surveys for rare species is ensuring
sufficient detections for analytical purposes, such as estimating frequency on the landscape
or modeling habitat relationships. Strict design-based approaches provide the least biased
estimates but often result in low detection rates of rare species. Here, we demonstrate how
model-based stratification can improve the probability of detecting five rare epiphytic
macrolichens (Nephroma laevigatum, N. occultum, N. parile, Lobaria scrobiculataa, and
Psuedocyphelaria rainierensis) in the Pacific Northwest. We constructed classification tree
models for four more common lichens (L. oregana, L. pulmonaria, P. anomala, and P.
anthraspis) that are associated with the rare species, then used the models to generate strata
for sampling for the five lichen species considered rare. The classification tree models were
developed using topographic and bio-climatic variables hypothesized to have direct rela-
tionships to the presence of the modeled lichen species. When the expected detection rates
using the model-based stratification approach was tested on an independent data set, it
resulted in two- to fivefold gains in detection compared to the observed detection rates for

four of the five tested rare species.

Key words:  classification trees; epiphytic lichens, model-based stratification; Northwest Forest

Plan; rare lichens; sampling; species rarity.

INTRODUCTION

Ecologists and conservationists often deal with rare
or uncommon species. Reasons for interest in these
species range from curiosity about the underlying eco-
logical relationships that determine rarity (Goerck
1997) to the need for information about the species so
that proper management and conservation strategies
can be developed (Sheldon 1988, Maina and Howe
2000). A common concern when designing surveys for
rare species is ensuring sufficient detections for ana-
Iytical purposes (Green and Young 1993, Edwards et
al. 2004), be they for estimations of frequency on land-
scapes (Alexander et al. 1997), or for use in explana-
tory or predictive models of suitable habitat or spatial
distribution (Hill and Keddy 1992, Wiser et al. 1998).

One specific example where the species of interest
appear to be ecologically rare, and for which there ex-
ists a strong need for estimates of frequencies for con-
servation purposes, is in the U.S. Pacific Northwest
and a subset of that area defined by the Pacific North-
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west Forest Management Plan (hereafter NWFP). The
NWFP was a direct consequence of a court-mandated
requirement to develop a scientifically credible con-
servation strategy for the Northern Spotted Owl Strix
occidentalis (see Thomaset al. 1990, Murphy and Noon
1992) while also maintaining biodiversity on public
lands within the area of the Plan. The Record of De-
cision leading to the Plan (ROD; U.S. Department of
Agriculture, Forest Service, and U.S. Department of
Interior, Bureau of Land Management 1994), and sub-
sequent amendments (U.S. Department of Agriculture,
Forest Service, and U.S. Department of Interior, Bureau
of Land Management 2001), identify more than 350
species of concern in the Plan area that required man-
agement plans. These species included fungi, lichens,
bryophytes, terrestrial mollusks, arthropods, a small
number of vascular plants, and several terrestrial ver-
tebrates. Collectively, these species and species groups
were referred to as Survey and Manage species. All
were hypothesized to have associations with old for-
ests, and concern existed over the possible impacts of
forest management on the persistence of these species.

One immediate realization was that insufficient in-
formation existed to ascertain the impacts of conser-
vation decisions on Survey and Manage species. Most
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of the species were known from relatively few sites,
and their spatial distributions were unclear as well.
Even less was known about basic life history attributes.
In one sense, the Survey and Manage species are rare
events in time and space. They are often associated
with microsite characteristics that are themselves rare
and patchy in time and space (lichens [McCune 1993,
Esseen et al. 1996]). Many also exhibit irruptive pop-
ulation behavior, appearing only for brief periods or
only once or twice over extended periods (fungi [Mo-
lina et al. 2001]), while in other cases, large distances
may exist between individuals or populations (fungi
[Dreisbach et al. 2002]). These characteristics make it
difficult to design statistically valid sampling schemes,
particularly when little is known about the species’
distribution or habitat requirements that could be used
to focus sampling efforts.

Sound study designs and analytical techniques for
estimating species frequencies are well represented in
the scientific literature (see Schreuder et al. 1993, Olsen
and Schreuder 1997) and have been successfully ap-
plied to diverse resource issues (forest resources [Gre-
goire et al. 1995, Shiver and Borders 1996], animals
[Sauer and Droege 1990, James et al. 1996], aquatic
systems [Stow et al. 1998]). However, many of these
approaches rely on design-based sampling efforts.
While design-based approaches clearly provide the
least biased estimates, they unfortunately are often of
insufficient sampling intensity to ensure enough ob-
servations of rare species. Methods such as adaptive
cluster sampling (Lohr 1999, Cutler et al. 2002, Phi-
lippi 2005) can increase sampling efficiencies, but
themselves can be limited by the information needed
for cluster starting points, or the need for immediate
identification of the sample unit of interest so that the
cluster can be identified and additional samples col-
lected or measured.

One way to increase detection probabilities for rare
species is to use presence—absence information from
other, more abundant but related species to generate
strata for sampling for the rare species. Strata could be
derived from any number of available statistical models
capable of relating a binary response to a set of pre-
dictor variables, such as generalized additive models,
logistic regression, and classification trees (see Hoeting
et al. 2000). Here, we examine the efficacy of a model-
based stratification approach based on classification
trees to enhance detection probabilities for rare epi-
phytic macrolichens in the Pacific Northwest. We fit
classification trees for four common lichen species, us-
ing selected topographic and bio-climatic variables all
hypothesized to have direct relationships to the pres-
ence of the common lichen species. The fitted trees
were then used to define sampling strata for associated,
rare lichen species. Specifically, we test whether mod-
el-based strata developed from more common, asso-
ciated species can improve the detection probabilities
of rare species. We next evaluate the efficacy of the
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Fic. 1. Generalized location of the LAQ (lichen air qual-
ity) model building plots (medium gray) and PILOT vali-
dation plots (black) in relation to the area of the Northwest
Forest Plan (light gray). The figure inset is a representation
of thevalidation PILOT points (black) and LAQ model build-
ing points (medium gray).

stratification process for predicting occurrences of rare
species on an independent data set within the same
geographic area, comparing the gains in the model-
based detection probabilities against those realized
from a systematic random sample design.

METHODS
Study area and species

Data used in our analyses were collected in the
NWFP area of the U.S. Pacific Northwest (Fig. 1). Two
subset study areas within the plan boundary were used
in our analyses. Thefirst (hereafter LAQ) was used for
model building purposes and included sampling sites
on seven national forests: the Umpqua, Willamette,
Mt. Hood, Deshutes, Gifford-Pinchot, Siuslaw, and
Winema (Fig. 1). Epiphytic macrolichen species were
surveyed from 1993 to 2000 as part of alarger effort
using lichens to evaluate air quality in the Pacific North-
west (Geiser 2004). The second survey (hereafter
PILOT) was conducted to provide data on rare, old-forest-
associated species to the NWFP Survey and Manage
program. These data served as an independent assess-
ment tool for the models. The PILOT surveysincluded
forests in three regions: the southern Washington Cas-
cades (Gifford Pinchot National Forest); the Oregon
Coast Range (Siuslaw National Forest and portions of
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TaBLE 1. Numbers (percentage) of detections of rare species that are co-located with more common species in the LAQ
(lichen air quality) study area within the range of the Pacific Northwest Forest Plan.

Common speciest

Rare species

Lobaria oregana Lobaria pulmonaria

Pseudocyphellaria
anomala

Pseudocyphellaria
anthraspis

Lobaria scrobiculata
Nephroma laevigatum
Nephroma occultum
Nephroma parile

Pseudocyphellaria rainierensis 8/9 (88.9)

37/47 (78.7)
24/25 (96.0)
10/13 (76.9)
24/31 (77.4)

8/9 (88.9)

39/47 (83.0)
19/25 (76.0)
13/13 (100.0)
27/31 (87.1)
719 (77.8)

19/25 (76.0)

Note: Empty cells indicate species that were never co-located.
T Numerator = number of detections of the rare species that are co-located with the common species; denominator = total
number of occurrences of the rare species in the LAQ study area.

Coos Bay, Eugene, and Salem Bureau of Land Manage-
ment lands); and the Umpqua Basin (Umpqgua National
Forest, Roseburg BLM [Bureau of Land Management],
and portions of the Willamette National Forest, and
Eugene and Coos Bay BLM).

All sample sites in both the LAQ and PILOT study
areas were surveyed at least once and samples of each
detected epiphytic macrolichen were collected for sub-
sequent identification. Crustose (e.g., Calicium spp.
and Chaenotheca spp.) and ground-dwelling species
(e.g., Cladonia norvegica, Peltigera pacifica) were not
surveyed at all sites and were excluded from analysis.
A total of 49 lichen species having designations rang-
ing from rare to common were considered. The four
most abundant species in the LAQ surveys that were
also sampled in the PILOT surveys, Lobaria oregana,
L. pulmonaria, Psuedocyphelaria anomala, and P. an-
thraspis, were used for modeling purposes. Each of
these species was detected on >120 of the 840 LAQ
sites, providing sufficient sample sizes for developing
model-based strata. Cross-tabulations of these species
with other, rarer species detected in both the LAQ and
PILOT surveysreveal ed substantial overlap of five spe-
cific rare species with the four identified more common
species (Table 1). Accordingly, we fit classification
trees for each of these four common species, with a
view to using the resulting predictive model for L. pul-
monaria to predict the presences of Nephroma laevi-
gatum, L. scrobiculataa, and P. rainierensis; the mod-
els for L. oregana and P. anthraspis to predict pres-
ences of P. rainierensis; and the model for P. anomala
to predict presences for N. occultum, L. scrobiculataa,
and N. parile.

Data structure and characteristics

Datain both study areaswere collected on the current
vegetation survey plots (CVS), a systematic grid over-
laid on all Forest Service and BLM lands in the Pacific
Northwest. Its principal application is the generation
of estimates of forest resources (see Max et al. 1996).
A total of 840 CVS plots were sampled in the LAQ,
and an additional 300 sites in the PILOT study area.
Sample sites were apportioned equally among the three
areas comprising the PILOT study area. Presence and

absence of each lichen species was recorded on a 1-
acre (0.4-ha) plot centered on the central (#1) subplot
on each CVS site for the LAQ survey (details in Ed-
wards et al. 2004). Plot size for the PILOT surveys
was 0.5 acres (0.2 ha). If the purpose of our study was
to compare the estimated percent occupancy rates from
the LAQ and PILOT surveys, the difference in the size
of the sample units would be aconcern given that larger
plotswill have higher probabilities of occupancy. How-
ever, the purpose of our analyses is to use the LAQ
data to fit a model that can be used to predict PILOT
survey sites that are more or less likely to be occupied
by the rare lichens, with a view to developing a strat-
ification for the PILOT sampling. For this application,
it does not matter if the PILOT plot size is the same,
larger, or smaller than the LAQ plot size.

All plot locations were intersected with spatially ex-
plicit maps of topographic and bio-climatic variables
(Table 2) in a geographic information system (GIS).
The selected topographic and bio-climatic variables
were all hypothesized to have direct relationships to
the presence of the modeled lichen species. Ninety-
meter resolution topographic variables (slope, aspect
and elevation) were obtained by resampling the 30-m
resolution national elevation data set (NED) (Gesch et
al. 2002). Bio-climatic variables were derived from the
DAYMET 1-km daily gridded weather surfaces that
have been reduced to 18-yr monthly and yearly cli-
matological summaries (1981-1998; dataisfrom DAY-
MET U.S. Data Center for Daily Surface Weather Data
and Climatological Summaries, available online).”

DAYMET generates daily surfaces of temperature,
precipitation, humidity, and radiation over large areas
of complex terrain (Thornton et al. 1997, Thornton and
Running 1999). It uses digital topographic models and
observations of precipitation, maximum and minimum
temperature from ground-based meteorol ogical stations
to generate other bio-climatic variables. Derivationsfor
the modeled variables follow the DAYMET method-
ology described by Thornton et al. (1997), applied to
monthly averages. Only the variable potential evapo-
transpiration (ETPJ), which is not part of the DAYMET

7 (http://www.daymet.org)
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TaBLE 2. Topographic and bio-climatic variables used to model the probability of presence
for four common lichen species in the LAQ study area of the Pacific Northwest Forest Plan.

Variable type/
name Description Units
Topographic
SLPE percent slope percent, 0—90
ASPE aspect degrees, 1-360
ELEV elevation m
Bio-climatic
PREC precipitation cm
TMAX maximum temperature °C
TMIN minimum temperature °C
TAVE monthly average temperature °C
ETPJ potential evapotranspiration mm
RELH relative humidity percent
VPAM ambient vapor pressure Pa
VPSA saturated vapor pressure Pa
SFMM monthly potential global radiation kJ
TDAY monthly average daytime temperature °C
MIND monthly moisture index cm

Note: Classification tree models based on these variables were used to generate sampling

strata for rare species.

procedures, was derived differently (see Jensen and
Haise 1963). We down-scaled the 1-km DAY MET var-
iables to 90-m resolution by first generating moving
window regressions between the monthly averages of
PREC, TMIN, and TMAX, and the topographic mod-
els, and then applying the regression parameters to the
center cell of each 1-km window position. The regres-
sion parameters (i.e., lapse rates and intercept) were
next interpolated to a 90-m resolution using inverse
distance weighed interpolations, thus generating
monthly 90-m resolution maps for each bio-climatic
variable.

Preliminary analyses showed that correlations
among the monthly values for the 11 sets of bio-cli-
matic predictor variables were extremely high. Such
extreme collinearity hasimplications for modeling. For
example, two variables that essentially contain the
same information can be selected in models for dif-
ferent species, implying differences in the models that
are not real. The same phenomenon can occur even at
different stages of the same classification tree model.
To address the issue of collinearity, a principal com-
ponents analysis was carried out on each of the 11 sets
of monthly bio-climatic predictors.

In each case, the first principal component was an
average of the 12 monthly measurements, while the
second principal component was a contrast of values
for six so-called summer months (April—-September) to
the six so-called winter months (October—March). For
each set of 12 monthly variables, these two principal
components explained over 95% of the variability, and
in most cases the first two principal components ex-
plained over 99% of the variability in the sets of var-
iables. Accordingly, for each set of monthly bio-cli-
matic predictors we defined two new variables: (1) the
average of the 12 monthly variables; and (2) the dif-
ference between the sum of the summer monthly values

and the winter monthly values, divided by 12. Hereafter
we use the variable suffix A’ to denote the average
of the 12 monthly measurements, and the suffix ““D”’
to denote the difference derived variable. Thus, TMI-
NA is the average minimum temperature for the 12
months and PRECD is the difference between summer
and winter precipitation.

Satistical modeling and assessment

We used classification trees (Breiman et al. 1984) to
relate the LAQ lichen presences to the modeled bio-
climatic and topographic predictor variables. Classifi-
cation trees have several advantages over other dis-
crimination techniques (e.g., GLMs, GAMs), principal
among these being the ability to deal with nonlinear-
ities in the predictor variables and assess interactions,
and ease of interpretation. For the most part we fol-
lowed the approach of De’ ath and Fabricius (2000), but
instead of allowing the tree size to be determined com-
pletely by cross-validation and the 1-se rule, we set
the complexity parameter at 0.02 instead of using the
default value of 0.01. This relaxation in complexity
resultsin smaller, easier to interpret classification trees
that have cross-validated error rates at least as good as
the larger trees obtained from the default value. The
classification trees were fit using the rpart library of
functions in the R statistical package (Ihaka and Gen-
tleman 1996 and online resources).®

We next fit the LAQ-based classification trees to our
spatially explicit predictors within the GIS and mod-
eled the probability of presence of each the four com-
mon lichen species across the entirety of the NWFP
region. This was accomplished by applying the clas-
sification tree to the GIS layers and generating new
maps that portrayed, for each 90-m pixel, the proba-

8 (http://www.r-project.org/)
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bility of each of the four common lichen species being
present at that particular pixel. Proportions of presences
from sample plots in the PILOT study area were then
examined against predicted probability for that plot,
allowing us to link the presence or absence of each of
the four common species to an estimate of the proba-
bility of presence. |deal concordance betweenthe LAQ
models and the common species in the PILOT area
would be represented as a 45° line on a scatter plot of
observed probabilities of presence against predicted
probabilities of presence (see Ferrier and Watson 1997:
Fig. 6.2). Data and a description of the process used
to estimate expected values for each rare species under
different sampling probabilities are found in Appen-
dices A-D.

Three measures of model error were used to evaluate
model performance. These measures were: (1) a re-
substitution (model) error rate, calculated using the
LAQ data and hence providing an indication of how
well the classification tree fit the modeling data; (2) a
10-fold cross-validation (Manly 1997) estimate of error
obtained by using 1000 subsamples of theoriginal LAQ
data; and (3) a prediction error rate for the PILOT
surveys, based on a probability of presence threshold
of P> 0.5.

Under the Survey and Manage program, actual de-
tections as opposed to region-wide estimates were of
paramount importance. To reflect this need and desire
for additional observed occurrences of the rare species,
we chose to allocate sample units proportionally to the
estimated probability of occurrence of the associated
common species in each stratum. Different researchers
with different objectives could use adifferent objective
function for assigning sample units to the strata and
still use all the other methodology described in this
section.

REsULTS

Although the classification tree models are purely
predictive in nature, it is interesting to note that the
first split in each classification tree is on an average
temperature index (Fig. 2) and that precipitation only
occurs in one of the four classification trees (L. ore-
gana). No topographic variables entered any of the
models as significant predictors. Not unexpectedly, the
LAQ model error estimates were lower than the LAQ
cross-validated error (Table 3), ranging from a low of
10.2% to a high of 18.3%. Cross-validation error
ranged from approximately 13% to 22%. Prediction
errors were 15% to 27%, indicating that the LAQ mod-
els had, on average, about aonein four chance of being
wrong. The cross-validated error rates were much clos-
er to the observed error rates on the PILOT data, and
likely better reflect the true error of the models.

LAQ models for the four common species, when
evaluated as plots of the observed occurrences versus
the predicted probabilities of occurrence, indicate all
models had substantial predictive power (Fig. 3). Mod-
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elsfor L. pulmonaria, L. oregana, and P. anomala are
best, with the estimated values and their 95% confi-
dence intervals encompassing the 45° line. The model
for P. anthraspis is not as good, with observed values
tailing off as the predicted probability of occurrence
increases, indicating on over-prediction of potential lo-
cations for these species.

To evaluate the efficacy of the LAQ classification
trees in determining a stratification for sampling of the
rare, associated species, we calculated the estimated
number of detections expected for each of the rare spe-
cies had the predicted probabilities of presence ob-
tained from the LAQ classification trees been used for
stratification purposes. For almost all combinations of
rare species and models of the more abundant species,
the expected number of detections would have been
higher under our model-based stratification than under
the systematic design that characterized the PILOT sur-
veys (Table 4). Gains in sampling efficiencies for four
of the five species (L. scrobiculata, N. laevigatum, N.
occultum, and N. parile) ranged from 1.2 to 5.0-fold,
while results showed no difference for P. rainierensis.
These increases in likely detections indicate that use
of the LAQ models as the basis for developing sam-
pling strata substantially increase the likelihood of de-
tection of the rare lichens.

DiscussioN

The models of the four common lichen species used
to develop the prediction strata for the rare lichens all
showed similar error rates when evaluated on the LAQ
data set. However, when tested on the independent PI-
LOT data set, the P. anthraspis and P. anomala models
performed best, followed by L. pulmonaria. The L.
oregana model produced the highest error rate. Overall,
the models were successful in generating clear im-
provements in estimated, or expected, detection rates
for four of the five rare lichen species (Table 4). Only
the model of L. oregana applied to P. rainierensis did
not perform well. The most likely explanation for the
low predictive extrapolation of this last model is the
lack of spatially explicit depictions of stand age for
use in building the associative models. In this case, L.
oregana and P. rainierensis are both associated with
old forest, but rainierensis is more likely to be found
in 300+-yr-old stands. Such subtle differences in eco-
logical relationships like this could easily confound
model-based stratifications, increasing the likelihood
of prediction error. This observation reinforces the im-
portance of having a solid understanding of species
ecology when model building, as well as the impor-
tance of testing any predictive model with an indepen-
dent test data.

Existing knowledge on lichen ecology suggests that
prediction error rates may be reduced substantially by
including additional information about forest stand
characteristics (e.g., stand age, size classes, hardwood
shrubs), and local moisture content (McCune 1993, Sil-
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A) Pseudocyphellaria anthrapsis

/ TMAXA = 1.65
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B) Lobaria oregana

TMINA > 1.65
TMAXA < 1.65
/
TMINA = 1.65
RELHA < 60.6 PRECA < 122
RELHA = 60.6 PRECA = 122
/
[0.12/49)
VPAMA < 702 TMINA =095 TAVED < 4.70
/ VPAMA= 702 TMINA > 0.95 TAVED = 4.70
\
MINDD = 1195 VPAMD < 153.2 RELHD < 5.96
/ MINDD < 1195 / VPAMD = 153.2 RELHD = 5.96
MINDD < -1115
// MINDD = -1115
C) Pseudocyphellaria anomala D) Lobaria pulmonaria
/ TAVEA = 7.06 /TAVEA = 7.43
TAVEA <7.06 TAVEA < 7.43
/
TMAXD = 5.79 RELHA = 64.95
TMAXD < 5.79 RELHA < 64.95
/ /
TMIND < 3.28 TDAYA < 9.36
TMIND = 3.28 TDAYA = 9.36

Fic. 2. Classification trees of the four modeled common li

chen species used to develop prediction strata for the five rare

lichen species in the area of the Northwest Forest Plan. See Table 2 for variable descriptions.

lett and Goslin 1999, Rosso et al. 2000, Peterson and
McCune 2001) into models to be used for stratification.
However, these types of variables were not available
in spatially explicit formats for the entire study region,
and hence could not be used for the purposes of strat-

ification in advance of sampling. Spatially explicit de-
pictions of these kinds of variables are simply un-
available in the vast majority of predictive modeling
efforts, often forcing models to be built using surro-
gates (e.g., topography) that may or may not have rel-

TABLE 3. Measures of error (%) for classification tree models built for four species of lichen

in the LAQ study area, and assessed using i
area, Pacific Northwest Forest Plan.

ndependent data collected in the PILOT study

PILOT

LAQ stratification models assessment

Cross-validation Prediction
Species Model error error error
Lobaria oregana 18.3 225 27.3
Lobaria pulmonaria 15.2 18.3 19.3
Pseudocyphellaria anomala 12.6 15.4 15.0
Pseudocyphellaria anthraspis 10.2 13.2 15.3
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Fic. 3. Plot of the cumulative observed proportion of occurrences (plus 95% ci) against the probability of occurrence
for four species of common lichen in the area of the Northwest Forest Plan. Predicted observations and 95% confidence
intervals that encompass the expected 1:1 fit indicate models with high predictive capability.

evance to the distribution of the species being model ed.
This shortcoming—the lack of strong linkage between
species presence and ecologically relevant variables—
is a common constraint faced by ecologists and cannot
be satisfactorily resolved until spatially explicit pre-
dictions of such variables are more readily available
(see Frescino et al. 2001).

There are several reasons why aspeciesisor remains
rare in a certain area, some of which can be captured
by predictive models, while others cannot (see Gaston
1994 for an overview). Key patterns associated with
rarity are (1) the main distribution of the species lies
outside of the study area, ostensibly because the latter
does not provide much suitable habitat (locally rare,
otherwise abundant); (2) the species has a patchy, scat-
tered distribution throughout its range, and populations
are smaller and likely limited by competition and/or
population constraints (generally and locally rare); (3)
the species has a patchy distribution, but population
size can be large at known sites (locally abundant, gen-
erally rare). Following the classification by Hanski
(1982) and Collins et al. (1993), the first group would
be classified as an “‘urban’ type, the second as‘‘rural”
type, while the last group can be labeled as ** satellite”

type.

Accurate, predictive models for urban species that
are dominant within their realized range are easier to
construct than models for rural or satellite species. So-
called urban species may not occur in many locations
within the study area, but if the environment issuitable,
they usually are present. Satellite type species may be
restricted to few locations because there are actually
only few suitable sites available. Often, however, dis-
persal limitations and other life history constraintslimit
this type from persisting, regenerating, or migrating to
other suitable habitats. Predictive models may not eas-
ily predict the presences of satellite type species suc-
cessfully, but the absences can be more accurately por-
trayed. This is because such species usually show a
well defined ecological niche even though they do not
occur on every suitable location. The most difficult
group of species to model would be the rural type.

Because our approach uses associative models pre-
dicting rare from more common species, care must be
exercised to ensure that the potential types of error are
understood. For example, it is likely that rare species
would have different niches than common species, by
definition alone (Gaston 1994). In this case, the poten-
tial for commission error exists if the niche of the rare
species is a subset of the more common species used
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TaBLE 4. Number of detections in the PILOT study area using simple random sampling (numerator), number of detections
using the model-based stratifications (denominator), and model efficiency (value in parentheses).

Common species

Lobaria Lobaria Pseudocyphellaria Pseudocyphellaria
Rare species oregana pulmonaria anomala anthraspis
Lobaria scrobiculata 13/26 (2.0) 13/36 (2.8)
Nephroma laevigatum 19/23 (1.2) 19/48 (2.5) 19/60 (3.2)
Nephroma occultum 1/5 (5.0) 1/5 (5.0)
Nephroma parile 7114 (2.0) 7116 (2.3)
Pseudocyphellaria rainierensis 2/1 (0.5) 2/5 (2.5) 2/5 (2.5)

Note: Model efficiency is estimated as the ratio of detections from the model-based stratification to those detected in the
PILOT study area, Pacific Northwest Forest Plan. Empty cells indicate species that were never co-located.

to develop the stratification model. Although it is less
likely that rare species’ niches are larger than common
species, it must be acknowledged that the potential for
omission error also exists. Yet even though omission
and commission errors occur with any predictive mod-
el, our use of models to develop sampling strata should
overcome this problem. Any sampling based on models
like ours should also include sampling effort allocated
to the lowest probabilities of presence, thereby ensur-
ing that sampling occurs across the spectrum of po-
tential locations for the rare species. We acknowledge,
however, that absences in the lower probability sites
may still be confounded with low detection rates, such
as is often the case for fungi (Dreisbach et al. 2002).
We know of no simple resolution to this concern.

We argue that distinguishing different types of rarity
may help to improve modeling of such rare events. To
our knowledge, none of the cited studies for modeling
rare species used any sort of formal model-based strat-
ification design based on more common species. Wiser
et al. (1998) demonstrated the difficulty of generating
viable models from very limited observations only
(10-24 presences), even though detailed, site-specific
bio-geochemical predictors were additionally used to
increase predictive capabilities. Engler et al. (2004)
used two initial data sets of 46 and 77 occurrences of
the rare species Erynguim alpinum L. to generate a
model-based design improved their ability to identify
new sites. A similar approach was performed by Sper-
duto and Congalton (1996). Such an approach is only
aviable alternative if a minimal set of observationsis
available up-front for arealistic initial model. Thiswas
not the case for any of the tested rare species in our
study.

A possible reason our effort worked so well is be-
cause all of our tested lichen species are cyanolichens,
and they therefore have distinct and similar habitat re-
quirements compared to green algal lichens. Green al-
gal lichens, which are approximately 75% of thelichens
in the Pacific Northwest, occupy wider ranges of hab-
itats. Consequently the use of intrageneric species
might not work so well in when applied to theselichens.
In a study on coastal lichens, L. Geiser (unpublished
data) documented the presence of Ramalina farianacea
on nearly every plot, leading to an almost virtual over-

lap with two species, R. thrausta and R. menziessi,
known to be rare. In such cases as this, it might be
better to select a less common species that also has
high association the targeted rare species, as we did
here.

Our results suggest a model-based stratification de-
sign that predicts rare species from more common ones
can improve detection likelihoods, especially if only
very limited information is available. We expect that
so-called ‘‘satellite” and “‘rural’” type species would
benefit from most from such a design, since their re-
alized niches are difficult to detect if only very few
observations are available for direct modeling an eval-
uation of the rare species. If one is interested in one
to few rare species for management and eval uation, the
best approach seems to be a combination of several
approaches. Model-based stratification as presented
here would logically be a first step in a sampling and
modeling process.
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APPENDIX A

A table showing the expected number of detections on model-assisted sampling for Pseudocyphellaria rainierensis from
the classification tree model of Lobaria oregana is presented in ESA’s Electronic Data Archive: Ecological Archives E086-
057-A1l.

APPENDIX B

A table showing the expected number of detections based on model-assisted sampling for Pseudocyphellaria rainierensis
and Nephroma laevigatum from the classification tree model of Lobaria pulmonaria is presented in ESA's Electronic Data
Archive: Ecological Archives E086-057-A2.

APPENDIX C

A table showing the expected number of detections based on model-assisted sampling for Nephroma occultumand Nephroma
parile from the classification tree model of Pseudocyphellaria anomala is presented in ESA's Electronic Data Archive:
Ecological Archives E086-057-A3.

APPENDIX D

A table showing the expected number of detections based on model-assisted sampling for Pseudocyphellaria anthraspis
is presented in ESA's Electronic Data Archive: Ecological Archives E086-057-A4.



